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The use of genetic expression programming to optimize
the parameters of the Muskingum method comparison
with numerical methods, Euphrates river a case study

Najah Al-Bedyry1, Maher Mergan2, Maha Rasheed3,
Zainab Al-Khafaji4, Fatimah Nadeem Al-Husseinawi5

Abstract: The Muskingham method uses two formulas to describe the translation of flow surges in
a river bed. The continuity formula is the first formula, while the relationship between the reach’s storage,
inflow, and outflow is the second formula (the discharge storage formula); these formulas are applied
to a portion of the river between two river cross sections. Several methods can be utilized to estimate
the model’s parameters. This section contrasts the conventional graphic approach with three numerical
methods: Genetic algorithm, Exponential regression, and Classical fourth-order Runge–Kutta. This
application’s most noticeable plus point was the need to employ a few hydrological variables, such as
intake, output, and duration. The location of the Euphrates entrance to the Iraqi territory in Husaybah
city was chosen with its hydrological data during the period (1993–2017) to conduct this study. The
goal function is established by accuracy criterion approaches (Sum of squares error and sum of squared
deviations). Depending on the simulation findings, the suggested predictive flood routing ideawas highly
acceptable with the prospect of adopting the Genetic Expression Programming model as a suitable and
more accurate replacement to existing methods such as the Muskingum model and other numerical
models, where this method gave results (𝑅2 = 0.9984, SSQ = 1.06, SSSD = 80.75), These results
achieved a hydrograph that is largely identical to what was given by the hydrological method called
Muskingham.
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1. Introduction
Many methods for forecasting the distinctive features of the movement of a flood wave

along a river have been sought after in order to ascertain the steps needed to safeguard
people and property from the effects of flooding and to enhance the management of water-
related systems along natural or artificial waterways.Many different flow routingmodels are
accurate enough when employed within their constraints to be found in the literature [1–5].
There are two types of flow routing: distributed and lumped. While lumped flow routing,
also known as hydrologic routing [6–8], calculates the flow as a time function at a single
location along a watercourse, distributed flow routing, also known as hydraulic routing,
simultaneously calculates the flow as a time function at numerous cross sections along
a river or stream [9, 10]. The numerical Saint-Venant formulas solution is utilized in the
majority of distributed routing models; dynamic routing models were essential for slowly
rising flood waves in mildly sloping channels (less than 0.10 percent slope), conditions
with large backwater effects caused by tides, significant tributary inflows, constrictions,
dams, and bridges, and situations where waves propagate upstream from massive tides,
storm surges, or extremely significant tributary inflows [11–13]. Because dynamic mod-
els can precisely simulate the broadest range of wave types and waterway features, the
economic viability of utilizing dynamic routing models for a wider range of applications
will steadily increase as the trend of increased computational speed and storage capabil-
ities with decreasing costs continue [14–16]. However, hydrological routing models will
continue to be utilized in a range of real-world applications due to their reasonable data
requirements and cheap operational costs (such as flood forecasting) [9,17–19]. The use of
genetic algorithms (GA) was made. Genetic operators are often employed in optimization
and hydrologic modeling [13, 20–22]. The chosen factors, such as the population size, the
number of generations, the types of mutations, selection, crossover, objective magnitude,
and the search space constraints, determine how well a GA functions. It is crucial to define
the upper and lower boundaries a genetic algorithm searches within [23–26].
The model’s parameters of river routing can be determined using a variety of ap-

proaches. This artical compares the traditional visual approaches to three numerical meth-
ods genetic algorithm, exponential regression, and classical fourth-order Runge–Kutta. This
application’s most visible advantage was the requirement to use a few hydrologic variables,
such as intake, outflow, and time. The Euphrates River was chosen as a case study, and the
objective function is determined using accuracy criterion procedures (sum of squared errors
and the sum of squared deviations). Based on the simulation results, the proposed predictive
flood routing concept was found to be highly acceptable, with the possibility of using the
genetic expression programming model as a suitable and more accurate replacement for
existing methods such as the Muskingum model and other numerical models.

2. Genetic Expression Technique (GEP)
A genetic programming and genetic algorithm-based algorithm, the GEP, With this

technique, linear chromosomes have preset lengths and are computer-coded. The funda-
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mental purpose of the GEP is to build a mathematical function from a set of input data.
In the GEP procedure, symbolic regression on the mathematical problem is performed
utilizing the bulk of the genetic operators from GA. The process starts with a specific
number of chromosomes produced for each individual (initial population). Following the
expression of these chromosomes, a set of fitness cases is utilized to evaluate each person’s
fitness. The people are then picked depending on how well they can reproduce through
modification [12,27–29]. Expression trees (ETs) and genomes are the two primary compo-
nents of the GEP (ETs). One or more genes, each of which is a mathematical formula, may
make up a genome. Each gene’s mathematical code is expressed in two separate languages
known as Karva Language, such as the language of the and the language of the genes.
The head and tail of the GEP genes are their two component sections. The head contains
variables, constants, and mathematical operators that encrypt mathematical expressions.
Variable and constant terminal symbols are found in the tail. More symbols are utilized if
the terminal symbols in the head are insufficient to describe a mathematical calculation.
The three major GEP operators are cross-over, transposition, and selection (recombina-
tion) [30]. These operators change the chromosomes to increase their fitness level for the
following generation. The operator rates set at the start of the model creation indicate
a particular chance of a chromosome altering. The typical acceptable mutation rate lies
between 0.001 and 0.1.
Additionally, 0.1 and 0.4 are suggested magnitudes for the cross-over and transposition

operators, respectively. The choice of the fitness function is the first of five significant
phases in getting ready to use GEP. For this issue, the phrase that measures the fitness 𝐹𝑖
of a specific programmed (𝑖) is as follows:

(2.1) 𝐹𝑖 =

𝑐𝑖∑︁
𝑖=1

[
𝑀 − 𝐶 (𝑖, 𝑗) − 𝑇𝑖

]
where𝑀 denotes the selection range,𝐶 (𝑖, 𝑗) denotes themagnitude returned for fitness case
𝑗 by the specific chromosome (out of 𝐶𝑡 fitness cases), and Tj denotes the desired outcome
for fitness case 𝑗 . The precision is equal to zero, and 𝐹𝑖 = 𝐹max = 𝐶𝑖𝑀 if |𝐶 (𝑖, 𝑗)Tj|
(the precision) is less than or equal to 0.01. In our instance, we utilized 𝑀 = 110; thus,
𝑓max = 1100.
The benefit of this fitness function is that the system may determine its ideal solution.

The second significant stage is the selection of the terminals 𝑇 and functions 𝐹 utilized
to build the chromosomes. The associated factor, i.e., 𝑄 = 𝐹𝑖 , 𝑇 , makes up the terminal
set in this problem. A good approximation may always be made to include all necessary
functions, even though selecting the right function set is only sometimes evident [31].
We employed several fundamental mathematical operations (1/𝑥, 𝑥0.5, 𝑥0.3, 𝑥3, 𝑥2) and
the four fundamental arithmetic operators (+,−, ∗, /). The selection of the chromosomal
architecture, or the size of the head and the number of genes, is the third important phase.
Selecting the connection function is the fourth important step. After several tests, it was dis-
covered that the GEPmodels performed best with a head length of 8, ℎ = 8, and three genes
per chromosome. Three genes per chromosome and ℎ = 8 are the head lengths employed in
this investigation. The GEP’s sub-ETs (genes) were connected through multiplication. The
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set of genetic operators was ultimately comprised of all genetic operators. Table 1 lists the
training parameters for the GEP models. The usual statistical measurements determination
coefficient 𝑅2 and root-mean-square errors RMSE are utilized to validate the GEP models’
performance:

𝑅2 =


∑
𝑞𝑥 𝑞𝑦√︃∑
𝑞2𝑥
∑
𝑞2𝑦


2

(2.2)

RMSE =

{∑ (
𝑞𝑜 − 𝑞𝑝

)2
𝑛

}0.5
(2.3)

where 𝑞𝑥 = (𝑞𝑜𝑞𝑜𝑚); 𝑞𝑦 = (𝑞𝑝𝑞𝑝𝑚); 𝑞𝑜 – detected magnitudes; 𝑞𝑜𝑚 – mean of 𝑞𝑜;
𝑞𝑝 – forecast magnitude; 𝑞𝑝𝑚 – mean of 𝑞𝑝; and 𝑛 – sample count.
A flowchart for the Genetic Expression Algorithm is demonstrated in Figure 1.

END

Fig. 1. Genetic Expression Algorithm (GEA) Flowchart
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Table 1. Genetic Expression Optimization Parameters

Parameters Parameters description Parameters setting

P1 chromosome number 26

P2 type of fitness function mistake 𝑅2

P3 the number of genes 4

P4 size of the head 12

P5 the linking function **

P6 set of functions +,−, ∗, /, 1/𝑋, 𝑋0.5, 𝑋0.3, 𝑋2, 𝑋3

P7 mutation rate 0.038

P8 rate of one-point recombination 0.35

P9 rate of two-point recombination 0.34

P10 rate of inversion 0.16

P11 rate of transposition 0.17

3. An analytical comparison mechanism

In this study, Muskingham’s method was utilized in conjunction with several numerical
methods to calculate the parameters of the water storage formula. This decision was made
depending on the accuracy and dependability of the findings produced by these methods
and the fact that many earlier studies [22, 32] had only sparingly employed them. The
selection of a subset of these techniques for this study allowed for analysis, comparison,
and an evaluation of the effectiveness of the outcomes.

3.1. Study area

The Euphrates River flows in Turkey, 10 kilometers north of Keban, near the junction
of the Murat and Karasu rivers. These rivers have their source in the Armenian uplands,
which are over 3000 meters high. Turkey, Syria, and Iraq are all countries through which
the Euphrates River primarily runs in a southeasterly direction. The Euphrates and Tigris
rivers come together downstream of El-Qurna to form the Shatt-al-Arab River, which flows
for 195 kilometers before emptying into the Arabian Gulf; the Euphrates River spans
2210 kilometers from Keban to El-Qurna [32].The location of the Euphrates entrance to
the Iraqi territory in Husaybah city was chosen with its hydrological data during the period
(1993–2017) to conduct this study.
The main source of river runoff is located in the hilly part of Turkey’s Euphrates

basin, which has a sophisticated drainage system. The catchment area above Keban town
is 64,000 km2, with an average of 850 mm of precipitation per year. Three important
tributaries join the Euphrates on the Syrian desert plateau. The three rivers are the Sadjur
River (2,350 km2), the Balikh River (14,400 km2), and the Khabur River (36,900 km2).



512 N. AL-BEDYRY, M. MERGAN, M. RASHEED, Z. AL-KHAFAJI, F.N. AL-HUSSEINAWI

While the other two rivers flow below the Tabqa dam, the Sadjur enters the Euphrates above
it [4, 33]. At its source near the Syrian-Iraqi border, the Euphrates has historically had an
average flow of 870 m3/s, a maximum flow of 7,400 m3/s, and a maximum discharge of
13,500 m3/s with a 0.1% possibility. There are no notable rivers that enter the Euphrates
in Iraq.
The river at Haditha, close to the proposed project’s site, has a width of 200 to 1100

meters and typical flows of 300 to 7,390 m3/s. The depth ranges from two to ten meters
or more. Speeds are between 0.2 and 3.0 m/sec. The catchment area is 234,600 km2 above
Haditha. About 80 kilometers downstream of Haditha, close to the town of Hit, the river
enters the Mesopotamian Plain, the main agricultural region. Three distinct phases can be
identified in the river’s annual flow:
– Heavy water (flooding) – 70% of the flow is from March to July;
– Low water: 10% of the flow from August to October; and
– High rainfall flows account for 20% of the flow from November to February.
The highest water levels are often seen in April and May, but heavy rains and thaw-

ing mountain snow occasionally allow floods to occur in March and even February. The
abovementioned data needs to account for the regulatory ramifications of the two dams just
finished in Turkey and Syria. The regime of the river has been significantly impacted by
these developments, notably during reservoir filling. At this moment, the long-term con-
sequences are unknown. The calculations of Muskingham’s approach for the hydrological
data of the Euphrates River for the period (1993–2017) indicated in Table 2, Figure 2,
demonstrate the catchment area boundaries of the Euphrates river [32].

Fig. 2. The Euphrates River’s Layout and Catchment Boundaries
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Table 2. The monthly average of the inflow and calculated outflow utilizing Muskingham’s
for the Euphrates River for the period (1993–2017)

Time
(hr)

Inflow
hydrograph
(m3/s)

Outflow
hydrograph
(m3/s)

Time
(hr)

Inflow
hydrograph
(m3/s)

Outflow
hydrograph
(m3/s)

1 95.00 85.00 11 630.0 650.0

2 142.0 95.00 12 575.0 610.0

3 204.0 114.0 13 470.0 615.0

4 322.0 162.0 14 391.0 510.0

5 436.0 230.0 15 325.0 485.0

6 545.0 321.0 16 255.0 400.0

7 623.0 427.0 17 180.0 320.0

8 680.0 500.0 18 130.0 225.0

9 684.0 552.0 19 105.0 200.0

10 672.0 622.0 20 90.00 150.0

4. Numerical approaches
Because several factors influence runoff from precipitation, this method is employed in

runoff correlation. The interaction between these two components is extremely intricate.
In the case of Muskingum flood guidance, the parameters are calculated depending on
the relationship between storage and average wet flow, and the correlation coefficient is
determined. Because it was considered in this study that the river basin’s catchment area
is big [34], it was preferable to employ exponential linear regression, and the general form
of this connection is as follows:

(4.1) 𝑦 = 𝛼𝑒𝛽𝑥

by linearizing this exponential form,

ln 𝑦 = ln𝛼 + 𝛽𝑥 + 𝜀(4.2)
𝑦 = 𝑎 + 𝑏𝑥 + 𝜀(4.3)

in routing form, this formula is:

(4.4) 𝑅= 𝑎𝑃 + 𝑏

where:

𝑎 =

𝑁

(∑
𝑃𝑅

)
−
(∑

𝑃

) (∑
𝑅

)
𝑁

(∑
𝑃2

)
−
(∑

𝑃

)2(4.5)
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𝑏 =

∑
𝑅 − 𝑎

(∑
𝑃

)
𝑁

, 𝑃 = storage (m3)(4.6)

𝑅 = [𝐼𝑋 + (1 − 𝑋)𝑂]𝑚(4.7)

𝑟 =

𝑁

(∑
𝑃𝑅

)
−
(∑

𝑃

) (∑
𝑅

)
√︄[{

𝑁

(∑
𝑃2

)
−
(∑

𝑃

)2}
·
{
𝑁

(∑
𝑅2

)
−
(∑

𝑅

)2}](4.8)

where 𝑟 = the correlation coefficient.

4.1. Classical forth-order Rung-Kutta method

Utilizing the Muskingum model in its linear form can lead to large errors because the
connection between weighted flow and storage is generally nonlinear. In flow direction, the
nonlinear Muskingum model is typically utilized, with the following nonlinear storage and
continuity formulas:

d𝑠
d𝑡

= 𝐼𝑖 −𝑂𝑖(4.9)

𝑆𝑖 = 𝐾 [𝑋𝐼𝑖 + (1 − 𝑥)𝑂𝑖]𝑚(4.10)

where: 𝑆𝑖 , 𝐼𝑖 , and 𝑂𝑖 refer to channel storage, inflow, and outflow rate, respectively, at
time 𝑡. While 𝐾 , 𝑋 , and m denote the storage parameter for the river or channel reach,
the weighting parameter, and the parameter that accounts for flood wave nonlinearity,
respectively. Also, the 𝑂 and 𝐼 have similar dimensions to discharge (𝐿3𝑇−1); and 𝑚 =

dimensionless (–), 𝑆 has 𝐿3 dimension, and 𝐾 has [𝐿 (1−𝑚) · 𝑇𝑚] dimension. By solving
formulas (4.9) and (4.10) for given magnitudes of 𝐼𝑖 and parameter magnitudes 𝐾 , 𝑋 ,
and 𝑚, the stream flow routing problem decides 𝑂𝑖 for any routing time. The outflow is
expressed when formula (4.10) is solved for 𝑂𝑖 .

(4.11) 𝑄𝑖 =

(
𝑠𝑖

𝑘

)𝑚−1

− 𝑥𝐼𝑖

1 − 𝑥
The storage volume shift rate concerning time is expressed by substituting 𝑂𝑖 from

formula (4.11) in formula (4.9).

(4.12)
d𝑆𝑖
d𝑡

=

𝐼𝑖 −
(
𝑠𝑖

𝑘

)𝑚−1

1 − 𝑥
Formula (4.12) generates an ordinary first-order differential formula and displays the

rate of change in storage, 𝑆𝑖 , concerning time 𝑡, for given magnitudes of 𝐼𝑖 and parameter
magnitudes 𝐾 , 𝑚. The beginning magnitude of storage is necessary to solve differential
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formula (4.12). The initial outflow is typically believed to be equal to the initial input
(𝑂𝑜 = 𝐼𝑜); hence, the initial outflow is computed utilizing formula (4.10):

𝑆𝑜 = 𝑘 𝐼𝑚𝑜(4.13)

𝑂𝑖+1 =

(
𝑆𝑖 + 1
𝑘

)𝑚−1

− 𝑋 𝐼𝑖 + 1

1 − 𝑥(4.14)

The steps for employing the Runge–Kutta method of the fourth order are as follows:
1. Assuming the magnitudes of 𝑘 , 𝑥, and 𝑚.
2. Determine the initial storage utilizing formula (4.10). 𝑆𝑜, given the magnitudes of 𝐼𝑜
and 𝑂𝑜,

3. Determine the quantity of storage that will be required next. 𝑆𝑖 is the current magnitude
multiplied by the product of the interval volume t and an approximation of the gradient
of the next storage evaluation, 𝑆𝑖+1. The slope will be computed as a weighted average
of the following slopes:

𝐾1 = −
(
1.0
1 − 𝑥

) (
𝑆𝑖

𝐾

)𝑚−1

+
(
1.0
1 − 𝑥

)
𝐼𝑖(4.15)

𝐾2 = −
(
1.0
1 − 𝑥

) (
𝑆𝑖 + 0.5Δ𝑡𝐾1

𝐾

)𝑚−1

+
(
1.0
1 − 𝑥

) (
𝐼𝑖 + 𝐼𝑖 + 1
2.0

)
(4.16)

𝐾3 = −
(
𝑆𝑖 + 0.5Δ𝑡𝐾2

𝐾

)𝑚−1

+
(
1.0
1 − 𝑥

) (
𝐼𝑖 + 𝐼𝑖 + 1
2.0

)
(4.17)

𝐾4 = −
(
𝑆𝑖 + 0.5Δ𝑡𝐾3

𝐾

)𝑚−1

+
(
1.0
1 − 𝑥

)
𝐼𝑖+1(4.18)

By averaging these four slopes, the following formula can be utilized to compute the
next weighted storage:

(4.19) 𝐾𝑖+1 = 𝑆𝑖 + Δ𝑡

(
𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4

6

)
4. Using formula 10 to calculate the next outflow.
5. Steps 3, 4 should be repeated.

4.2. Methods of accuracy criterion, SSQ, SSSR

The sum of squares error (SSQ) and squared deviations between detected and measured
storage rates (SSSR) was utilized to evaluate the outcomes. The discrepancy between the
detected magnitude and the projected magnitude is the error. Usually, we wish to reduce
the error. The regression is estimating power increases with decreasing error:

Minimize(SSQ) =
∑︁

(𝑂𝑜𝑏 −𝑂𝑚𝑠)2(4.20)
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𝑆observed = 𝐼𝑖 −𝑂𝑖(4.21)

𝑆computed =
𝑑 [𝑘 {𝑋𝐼𝑖 + (1 − 𝑋)𝑂𝑖}]

𝑑𝑡
(4.22)

The SSSR can be calculated as follows:

SSSR =
∑︁ [

𝑆observed − 𝑆computed
]2(4.23)

SSSR =

𝑖=1∑︁
𝑖=0

[{
(𝐼𝑖 + 𝐼𝑖 + 1) − (𝑂𝑖 +𝑂𝑖 + 1)

2

}
(4.24)

−
{
𝑘 (𝑥 𝐼𝑖 + 1 + (1 − 𝑥)𝑂𝑖 + 1)𝑚 − 𝑘 (𝑥𝐼𝑖 + 1 + (1 − 𝑥)𝑂𝑖)

Δ𝑡

}]2
5. Results analysis and discussion

One of the most important tools for decision-makers and water resource planners to
prevent flood tragedies is flood prediction and control. The Muskingum model is one of
the most utilized techniques for forecasting flood routes. For precise flood routing, four
Muskingum model parameters must be specified. In this case, an optimization process
called (GEP) that self-searches for the optimum magnitudes of these parameters may
improve the standard Muskingum model. Also, two other numerical approaches were
utilized to estimate the outflow. At the beginning of the procedure, the parameters of the
evolutionary algorithm have no predetermined magnitudes. As a result, sensitivity analysis
was utilized to establish the parameters. For this experiment, the SSQobjective functionwas
employed, and how the objective functionmagnitude changed for various magnitudes of the
parameter was computed. The optimal magnitude for each parameter was selected when
the goal function magnitude was lowest. Compared to other approaches, the suggested
genetic expression programs depending on the Muskingum model demonstrated good
flood routing accuracy while requiring less computational effort, as demonstrated by peak
discharge error and time to peak. Given that the inflow and outflow hydrographs display
various peak drainage features, the Euphrates river was selected as a good location for the
GEP model construction, as demonstrated in Figure 3.
The GEP model led to the optimization of parameters in the Muskingum method, as

illustrated in a Table 3. The new GEP technique produces good findings (𝑅2 = 0.9984)

Table 3. Correlation coefficient 𝑅2 and accuracy criterion, SSQ, SSSR and RMSE

Method 𝑅2 SSQ SSSR RMSE

Muskingham 0.912 2.82 5422.9 1.23

GEP 0.9984 1.06 80.75 1.01

Exponential regression 0.923 2.33 4430.0 1.31

Runge–Kutta 0.90 3.21 5432.6 1.30
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Fig. 3. Flood Hydrograph for study area, Husaybah city

when contrasted with the forecast from the current case study, the SSQ and SSSR for the
Muskingum method similar to the rest of the numerical methods, but these values is better
for GEP.

6. Conclusions
Depending on the findings of the Euphrates river flood routing investigation, the fol-

lowing conclusions can be made:
1. Depending Muskingum model.
2. Genetic expression model.
3. Exponential regression model.
4. Classical fourth-order Runge–Kutta model.
– Four sets of mathematical modeling of the Euphrates River flood routing were
examined on various approaches.

– A very high and positive coefficient of correlation of 0.9984 was obtained from
the genetic expression model, along with a standard error of 0.1749. This model
produced the curve that fit the field data the best.

– Other researchers could use this novel technique because all the implementation
specifics for gene expression programming were properly documented. Additionally,
the issues selected to demonstrate howGEPworks demonstrate that the newparadigm
may be utilized to address a variety of issues from other industries with the benefit
of operating effectively on a personal computer.

– The novel idea underlying linear chromosomes and the ETs allowed GEP to perform
better than currently utilized adaptive algorithms. As a result, GEP provides new
potential for resolving more challenging scientific and technological issues. Another
noteworthy and innovative aspect of GEP is its numerous genetic configuration,
which turns it into a fully hierarchical discovery method. Finally, since gene expres-
sion algorithms more closely mimic nature, they can be utilized to simulate natural
evolutionary processes in computers.
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